Let us Practice

Exercise 1

1. The biochemical component of erythrocyte membrane determining blood group is (3rd NSEB)
 (a) lipoprotein (b) glycoprotein
 (c) phosphoprotein (d) haemoprotein

2. If two genes are very closely set on a chromosome, the crossing over between the two is (2nd NSEB)
 (a) impossible (b) very rare
 (c) frequent (d) uncertain

3. If the haploid number for a species is three, each dividing diploid cell during mitosis will have how many chromatids at anaphase? (1st NSEB)
 (a) 3 (b) 6
 (c) 9 (d) 12
 (e) 18

4. The statement “All biological catalysts are proteins” is no more valid because of the discovery of (FINBO)
 (a) ribonuclease (b) ribozymes
 (c) lysozymes (d) enzymes

5. In a living cell, the site of anaerobic respiration is (1st NSEB)
 (a) cytoplasm (b) mitochondria
 (c) cell membrane (d) cell wall

6. Glutathione (G-SH) is present in high concentration in red blood cells and performs major function of (1st NSEB)
 (a) reducing agent (b) oxidizing agent
 (c) enzyme co-factor (d) oxygen coupler

7. The enzymes of Krebs’ cycle are localized in the (1st NSEB)
 (a) mitochondrial matrix (b) perimitochondrial chamber
 (c) inner mitochondrial membrane (d) outer mitochondrial membrane

8. In the cell cycle, replication of chromosomal DNA takes place in (1st NSEB)
 (a) prophase (b) anaphase
 (c) interphase (d) telophase

9. Synthetic DNA template when mixed with an enzyme, phosphatase, will give (1st NSEB)
 (a) nucleotide (b) nucleoside
 (c) nucleosome (d) nitrogenous base

10. Biochemical reagents are widely used for detection of biomolecules. A reagent that specifically detects a carbonyl group (C=O) in a biomolecule will yield a positive test with (1st NSEB)
 (a) protein (b) fatty acid
 (c) carbohydrate (d) All of these

11. Cholesterol (1st NSEB)
 (a) plays an important role in controlling the fluidity of cell membranes
 (b) holds membrane bound proteins within the lipid bilayer
 (c) often has a role as a hormone receptor on the surface of membranes
 (d) is a water soluble molecule found in both prokaryotes and eukaryotes
 (e) is a toxic molecule not found in the body of healthy humans

12. A high surface area to volume ratio in cells is important because it (1st NSEB)
 (a) enables efficient transfer of wastes, nutrients and gases across the cell membrane
 (b) prevents overproduction of cell proteins due to structural limitations
 (c) allows many antigens on the surface for identification of self and non-self
 (d) provides better structural support to cope with external physical pressure
 (e) allows for cell division

13. Endocytosis is a process whereby a cell (1st NSEB)
 (a) digests itself
 (b) engulfs and internalizes material using its membrane
 (c) identifies other cells within its immediate surroundings
 (d) enables the extracellular digestion of large molecules
 (e) avoids its cytoplasm during mitosis
14. Which statement is false?
(a) During the process of exocytosis, the lumen of the vesicle (2nd INBO) becomes the inside of the plasma (cell) membrane
(b) Cilia, microtubules and flagella are all associated with movement in cells
(c) A function of the nucleus is duplicating the genes for cell division
(d) Proteins that are to be secreted by the cell are generally synthesized by membrane-bound ribosomes
(e) Active transport involves movement of molecules into a cell against their concentration gradient

15. A molecular biologist is doing some experiments with nucleotide bases of mRNA. He inserts three nucleotides, i.e., cytosine (C) between the third and fourth bases. The resulting RNA chain will transcribe for a protein (1st NSEB)
(a) which will be very different
(b) which is essentially the same as before
(c) non-protein will be transcribed
(d) a hybrid protein will result

16. A unit composed of sugar and nitrogen base linked by glycosidic bond is (3rd NSEB)
(a) purine
(b) glycoside
(c) nucleoside
(d) nucleotide

17. Kreb’s cycle is a (3rd NSEB)
(a) catabolic pathway
(b) anabolic pathway
(c) amphibolic pathway
(d) None of these

18. Cyanide had a direct action upon (2nd NSEB)
(a) glycolysis
(b) cytochrome oxidase
(c) membrane transport
(d) flavoprotein

19. Animal cells are suspended in a culture medium that contains excess glucose. The graph below shows glucose utilization under different growth conditions. (A), (B), and (C) in the graph indicate (2nd INBO)

20. The cell membrane of eukaryotic cells cannot (2nd ABO)
(a) be involved in receptor mediated endocytosis
(b) undertake pinocytosis
(c) undertake phagocytosis
(d) stop the diffusion of water

21. Which of the following statements are correct for mammalian cell membranes? (2nd ABO)
I. There are two phospholipid layers coating a layer of protein.
II. They contain cholesterol to moderate fluidity
III. They are supported on the inner cellular layer by a thin peptose layer.
(a) I only
(b) II only
(c) I and II
(d) I, II and III

22. Hexose monophosphate shunt is an additional pathway for oxidation of glucose. It generates NADPH essential for fatty acid synthesis. This pathway predominates in all except one of the following tissues. This tissue is (2nd NSEB)
(a) adipose tissue
(b) lactating mammary gland
(c) adrenal cortex
(d) skeletal muscle

23. Organisms surviving at very high and very low temperatures show various adaptations. Plasma membrane of these organisms show marked difference in (2nd NSEB)
(a) content of phospholipids
(b) content and type of integral proteins
(c) content and type of peripheral proteins
(d) content of unsaturated fatty acids

24. All of the followings are accurate regarding the processes of transcription and translation, except (2nd INBO)
(a) transcription and translation take place outside the nucleus
(b) transcription and translation are the processes for making enzymes
25. Consider a cell of dimensions ‘m’ units. It occupies a volume of m^3 and its surface area is 6m^2. Another cell that has the same volume, shows a long thready structure with length 16 m. The surface area of the latter cell will be (2^{nd} INBO) (a) more by the factor of 2.69 (b) less by a factor of 0.37 (c) same as cubical cell (d) different by a factor of 16.1

26. Telomeres are the nucleotide sequences located at the extremity of the chromosome. The length of telomeres diminishes automatically at each cell division by a simple mechanical effect linked to the replication of genome. The telomere reduces to a critical length, which does not allow replication anymore. The cell has a particular enzyme, telomerase which can lengthen telomeres. Then (2^{nd} INBO) (a) activation of telomerase antibodies can result in cellular immortalization (b) recovery of telomere length can result in cell death (c) killer T-cells that are directed against telomerase expressing cells can destroy cancer cells (d) None of the above

27. Which statement best describes the process of endocytosis? (a) A vesicle within a cell fuses with the plasma membrane and releases its contents to the outside (b) Solid particles or liquids are taken up by a cell through invagination of the plasma membrane (c) Investment in one cytosis reduces the ability of the parent to assist another cytosis (d) One region of an embryo directs the development of a neighbouring region of an embryo through movement of cells (e) An organism obtains its energy from light and organic compounds

28. Choose the answer that has the following events of protein synthesis in the proper sequence. I. An aminoacyl tRNA binds to the A site II. A peptide bond forms.

III. tRNA leaves the P-site and the P-site remains vacant.
IV. Small ribosomal sub-unit associates with mRNA.
V. Translocation of the tRNA to the P-site.
(a) I, III, II, IV, V (b) II, IV, V, I, III (c) IV, I, II, V, III (d) IV, I, III, II, V (e) V, IV, III, II, I

29. Smooth endoplasmic reticulum is specialized for the synthesis of lipids and steroids. These organelles are found predominantly in (a) pancreas (b) ovary (4^{th} NSEE) (c) reticular cells (d) blood

30. The graph depicts the effect of decoupler on the movement of solutes across a membrane. ‘A’ and ‘B’ represent (4^{th} NSEB)

(a) facilitated diffusion and coupled transport respectively (b) active transport and diffusion respectively (c) coupled transport and facilitated diffusion respectively (d) diffusion and active transport respectively

31. Carbonic anhydrase is an enzyme in red blood cells that catalyzes a reaction between carbon dioxide and (a) bicarbonate (b) carbonic acid (c) haemoglobin (d) oxygen (e) water

32. Which one of the following pieces of evidence does not contradict the Davson-Danielli model of membrane structure? (a) Lipids are arranged in a bilayer with hydrophobic groups in contact with each other (b) Treatment of membranes with salts removes only a portion of the protein
33. A mass of living cells are placed in a culture medium under aerobic conditions. The cells were supplied with labelled C_{14} glucose, as the sole source. Which one of the following is true?
(a) CO$_2$ will contain C_{14}
(b) Water molecules will have some radioactivity
(c) ATP will have some radioactivity
(d) Cells would burst open

34. Which of the following statements is correct about the expression of genes?
I. A single gene locus can never influence more than one trait or phenotype.
II. Several gene loci may influence the expression of a single trait or phenotype.
III. A gene will be expressed depending on environmental and life cycle factors.
(a) I only (b) III only
(c) I and II (d) II and III
(e) I, II and III

35. Much of the DNA is localized in chromosomes of the nucleus. The other major constituent of the chromosomes is RNA.
(a) RNA (b) basic proteins
(c) acidic proteins (d) None of these

36. A and B in the given graph are the action spectra of the two enzymes. The two enzymes are

(a) A–Amylase B–Trypsin
(b) A–Pepsin B–Trypsin
(c) A–Chymotrypsin B–Renin
(d) A–Lactate dehydrogenase B–Amylase

37. If the rate of a reaction is given as $K[A^-][X]^2$ where $[A^-]$ and $[X]$ are the concentrations and K is the ten constant, which of the following curve represents the correct variation of reaction rate with time?

38. The accompanying graph shows the curve for the transfer of ^{14}C labelled leucine from prelabelled mRNA fraction to ribosomal fraction (mRNA–ribosome fraction).
What does the observation support?

39. If a polynucleotide strand has 250 nucleotides, the number of ways in which the four types of nucleotides can be arranged is
(a) 4 (b) 250
(c) 250 (d) 4^{250}
40. The number of chiasmata are (3rd NSEB)
(a) inversely proportional to the length of the
(b) directly proportional to the length of the
(c) independent of the length of the
(d) more in bacteria

41. The conversion of ammonia to ammonium occurs
(a) on the ribosomes of cyanobacteria
(b) on the endoplasmic reticulum of green algae
(c) spontaneously when ammonia is in water
(d) on the dry surface of soil particles

42. If cells in the process of dividing are subjected to colchicine, a drug that interferes with the functioning of the spindle apparatus, at which stage will mitosis be stopped?
(a) Anaphase (b) Prophase
(c) Interphase (d) Metaphase

43. Which statement about glycolysis is false?
(a) During glycolysis, glucose is metabolized to pyruvate with the formation of ATP and NADH + H+
(b) The initial step in glycolysis requires the phosphorylation of glucose by the enzyme phosphoglucomutase
(c) The conversion of phosphoenolpyruvate to pyruvate is catalyzed by the enzyme pyruvate kinase and results in the formation of ATP
(d) The end product of glycolysis, pyruvate, can be used by yeast to produce ethanol during fermentation
(e) Glycolysis occurs outside the mitochondria

44. Chloramphenicol, an inhibitor of protein synthesis, would inhibit protein synthesis in mitochondria but would not do so with regard to protein synthesis in the cytoplasm. This suggests that
(a) the mitochondrial protein synthesis and the cytoplasmic protein synthesis are of different types
(b) the enzyme machinery of protein synthesis in mitochondria function independently
(c) the mitochondria are semi-autonomous
(d) Both (b) and (c)

45. A scientist produced some mutant fungal cells that, under normal growth conditions, were much smaller, and which grew much more slowly than normal cells. When the mutant and normal cells were each grown in a glucose solution in a tightly sealed container and examined after one week, the two types of cells looked identical and had grown to the same extent. Which statement best explains these results?
(a) Each mutant fungal cell was lacking a Golgi apparatus
(b) Glucose is poisonous to fungal cells
(c) Glucose could not be used as an energy source by mutant fungal cells
(d) The mutant fungal cells had abnormal mitochondria
(e) The mutant fungal cells had abnormal lysosomes

46. Immune response in terms of antibody levels in blood is depicted below. Mark the correct interpretation (4th NSEB)

(a) ‘A’ and ‘B’ indicate response to two different antigens
(b) ‘A’ and ‘B’ indicate two different types of antibodies
(c) ‘A’ and ‘B’ indicate primary and secondary immunological response
(d) Both ‘a’ and ‘b’

47. A scientist added a chemical (cyanide) to an animal cell to stop aerobic respiration. Which of the following is most likely to have been affected by this treatment?
(a) Active transport of substances across the plasma membrane
(b) Passive transport of substances across the plasma membrane
(c) Diffusion of substances across the plasma membrane
(d) The size of the ribosomes in the cytoplasm
(e) The thickness of lipid bilayers

48. You are given a nucleic acid that you think is single-stranded DNA, but you are not sure. You analyze the nucleotide composition of the sample. Which of the following compositions would confirm your thinking?
Indian National Biology Olympiad

49. In experiments with an enzyme from a mammalian gut, the two curves labelled as A in the figures were obtained. At what temperature and pH would you perform experiments with this enzyme for optimum activity?

- (a) 34°C, 7.2 pH
- (b) 40°C, 8 pH
- (c) 30°C, 6 pH
- (d) 45°C, 7.8 pH

52. Which statement is correct?
During aerobic respiration
(a) the energy for oxidative phosphorylation comes from ATP
(b) the energy to make ATP comes from the potential difference in proton concentration across the inner mitochondrial membrane
(c) ATP is made by the transport of protons through a series of oxidation-reduction reactions, resulting in the transfer of electrons across the cristae membrane of the mitochondrion
(d) a mole of glucose may yield from 40 to 50 moles of ATP
(e) Glucose is first converted to pyruvic acid in the mitochondrion

53. Enzymes of pentose phosphate pathway of aerobic respiration are found in
(a) mitochondria
(b) mitochondria and cytosol
(c) cytosol
(d) cytosol and ER

54. Which statement is false?
(a) NADH dehydrogenase is the terminal electron acceptor of the electron transport chain
(b) \(O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \)
(c) The electron transport chain uses electrons from the oxidation of glucose to drive proton pumps
(d) The ultimate acceptor of electrons harvested from pyruvate is oxygen gas which is reduced to form water
(e) The oxidation of glucose to two pyruvate molecules from glycolysis yields two \(ATP \) molecules

(a) Adenine 38%-Cytosine 12%-Guanine
12%-Uracil 38%
(b) Adenine 22%-Cytosine 32%-Guanine
17%-Thymine 29%
(c) Adenine 22%-Cytosine 32%-Guanine
17%-Thymine 29%
(d) Adenine 38%-Cytosine 12%-Guanine
12%-Thymine 38%
(e) None of the above

51. With respect to the process of aerobic respiration, which statement is correct?

(a) Entropy increases as the process takes place
(b) The reaction violates the second law of thermodynamics because the process is controlled by enzymes
(c) During the process, entropy is converted into free energy
(d) During the process, the free energy of the system increases
(e) During the process, the free energy remains constant

50. Which statement is correct?

(a) 34°C, 7.2 pH
(b) 40°C, 8 pH
(c) 30°C, 6 pH
(d) 45°C, 7.8 pH

sequence of the mRNA transcribed by the segment of DNA will be

5' ATGTGCTTGCAACAT 3' Sense strand
3' TACAGGAACGTGGTA 5' (2nd NSEB)

(a) 5' AUGUCCUUGCAACAU 3'
(b) 5' UACAACGUUCCGUAU 3'
(c) 5' UACAGAAACGUGUGTA 3'
(d) 5' AUGUUGCAAGGACAU 3'

51. With respect to the process of aerobic respiration, which statement is correct?

(a) Entropy increases as the process takes place
(b) The reaction violates the second law of thermodynamics because the process is controlled by enzymes
(c) During the process, entropy is converted into free energy
(d) During the process, the free energy of the system increases
(e) During the process, the free energy remains constant

52. Which statement is correct?
During aerobic respiration
(a) the energy for oxidative phosphorylation comes from ATP
(b) the energy to make ATP comes from the potential difference in proton concentration across the inner mitochondrial membrane
(c) ATP is made by the transport of protons through a series of oxidation-reduction reactions, resulting in the transfer of electrons across the cristae membrane of the mitochondrion
(d) a mole of glucose may yield from 40 to 50 moles of ATP
(e) Glucose is first converted to pyruvic acid in the mitochondrion

53. Enzymes of pentose phosphate pathway of aerobic respiration are found in
(a) mitochondria
(b) mitochondria and cytosol
(c) cytosol
(d) cytosol and ER

54. Which statement is false?
(a) NADH dehydrogenase is the terminal electron acceptor of the electron transport chain
(b) \(O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \)
(c) The electron transport chain uses electrons from the oxidation of glucose to drive proton pumps
(d) The ultimate acceptor of electrons harvested from pyruvate is oxygen gas which is reduced to form water
(e) The oxidation of glucose to two pyruvate molecules from glycolysis yields two \(ATP \) molecules
55. Which statement about starch metabolism is false?
(a) Starch is synthesized from an intermediate product of the Calvin cycle.
(b) Respiration of the breakdown of starch occurs in the cytosol (the soluble aqueous portion of the cytoplasm).
(c) Hydrolytic enzymes catalyze the breakdown of starch to free sugar.
(d) Starch is a linear and/or branched polymer of glucose.
(e) Amylase enzyme from human saliva degrades starch.

56. Which statement about the light reactions of photosynthesis is false?
(a) Photosystems I and II are located in the stroma of the chloroplast.
(b) Photosystem I and II are linked by a chain of electron carriers that is similar to that found in mitochondria.
(c) During photophosphorylation, water is oxidized to form H⁺ and O₂ yielding electron to photosystem II.
(d) Chlorophyll pigments have an absorption spectrum with pronounced peaks in the red and blue wavelengths.
(e) Protons diffuse through protein channels which are ATP-synthase molecules.

57. The synthesis of protein that have carbohydrates and lipid molecules attached is carried out by
(a) only ribosomes using especially modified amino acid with oligosaccharides and lipid attached.
(b) ribosomes, the endoplasmic reticulum and lysosome.
(c) ribosome and enzyme found within both the endoplasmic reticulum and mitochondria.
(d) enzymes outside the cell membrane as only pure proteins molecules are able to be made within a cell.

58. If one mole of glucose and six moles of oxygen yield six moles of carbon dioxide and six moles of water, when completely metabolized in a living cell, the net energy yield should be
(a) two ATP molecules.
(b) two NADH and two ATP molecules.
(c) six NADH and two FADH₂ molecules.
(d) 686 kilocalories.
(e) 686 kilocalories for each of the two turns of the Krebs’ cycle (citric acid).

59. Once transcribed, eukaryotic mRNA typically undergoes substantial alteration that result primarily from
(a) excision of introns.
(b) fusion into circular forms known as plasmids.
(c) linkage into histone molecules.
(d) union with ribosome.

60. Which statement about the Calvin cycle is false?
(a) \(6\text{CO}_2 + 12\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}\)
(b) The five-carbon sugar ribulose bisphosphate is the acceptor molecule for CO₂.
(c) Two molecules of phosphoglycerate (PGAL) combine to form one molecule of glucose.
(d) Phosphoglycerate molecules are phosphorylated using ATP and then reduced to PGAL by NADPH.

61. Three properties (I, II, III) of an amino acid are given. Study the structure and mark one amino acid which has all the three properties.
I. Contain an imino group.
II. With ninhydrine formed a yellow derivative.
III. Is a non essential amino acid.
(a) \(-\text{OOC} = \text{CH}_2 = \text{CH} = \text{CH} = \text{COO}^-\)
(b) \(\text{CH} = \text{CH} = \text{COO}^-\)
(c) \(\text{H}_3\text{N} - \text{CH} = \text{CH} = \text{CH} = \text{COO}^-\)
(d) \(\text{HN}^+\text{NH}^- \text{CH} = \text{CH} = \text{COO}^-\)

Glutamic acid
Proline
Lysine
Histidine
62. The chemiosmotic hypothesis attempts to explain:
(a) the movement of water into the chloroplast and its use in photosynthesis
(b) the coupling of ATP formation to electron flow in an electron-transport chain
(c) the movement of lipid-soluble molecules through a membrane
(d) the movement of NADH from the cytoplasm into the mitochondrion
(e) the coupling of chemical gradients to osmosis

63. A bacterial mRNA with a length of 360 nucleotides in length codes for a protein of:
(a) roughly 360 amino acids
(b) roughly 1080 amino acids
(c) exactly 120 amino acids
(d) less than 120 amino acids

64. What letter indicates the end of meiosis I?

65. In enzyme industry, glucose isomerase is effectively used for:
(a) hydrolysis of sucrose
(b) clarification of fruit juices
(c) fructose production from corn syrup
(d) deoxygenation of fruit juices

66. In the base composition of DNA from bacterium Mycobacterium tuberculosis was determined, 18% of the bases were found to be adenine. What is the [G] + [C] content?
(a) 18%
(b) 32%
(c) 36%
(d) 64%

67. The correct sequence of organelles without binding membrane and with single, double and triple binding membranes is

I. sphaerosomes (plant lysosomes)
II. transposomes (in ovarian follicular cells)
III. ribosomes
IV. mitochondrion
(a) III, I, IV, I
(b) IV, I, IV, III
(c) III, I, IV, II
(d) II, IV, III, I

68. Which of the following statements is false?
"For almost every foreign antigen you may encounter"
(a) a subset of β-cells already exists in your body specific to it
(b) a subset of T-helper cells already exists in your body that expresses a T-cell receptor specific to it
(c) a subset of phagocytes already exist in your body that phagocytizes only that antigens
(d) a subset of antigen-specific antibodies already exists, but are not yet produced in large numbers

69. Which of the following correctly ranks the following structures in terms of size, from smallest to largest? Antibody molecule (Ab), White blood cell (WBC), mitochondria (Mi), lymph node (LN), Spleen (S) and Antigenic determinant (Ad).
(a) Mi-Ab-Ad-WBC-S-LN
(b) Ad-Ab-Mi-WBC-LN-S
(c) Ab-Ad-WBC-LN-Mi-S
(d) Ad-Ab-WBC-Mi-S-LN

70. Which of the following is concerned with the synthesis and transport of lipids and steroid within a cell?
(a) Pinocytic vesicle
(b) Nuclear membrane
(c) Smooth endoplasmic reticulum
(d) Rough endoplasmic reticulum

71. Which of these units concerned with regulation of transcription of constituent gene not considered as a part of operon?
(a) Regulator gene
(b) Regulator gene and promoter gene
(c) Promoter gene and operator gene
(d) Operator gene
72. The mitotic apparatus in a dividing cell is best studied by
(a) phase microscope, where phase of the image changed according to refractive index
(b) polarization microscope, where molecular arrangement affects speed and direction of polarized light
(c) electron microscope, where resolution is enhanced due to use of electrons
(d) scanning electron microscope, where electrons are scattered or emitted from specimen's surface

73. In a synthetic DNA template, every third purine base is replaced by another purine and pyrimidine by another pyrimidine. The resultant gene will code for a protein that is
(a) most likely to be identical to the one obtained before replacement
(b) is strikingly different in its amino acid composition
(c) is heat stable due to increased proline content
(d) will contain more percent of amino acids with non-polar R groups

74. The reappearance of nucleolus towards the end of mitosis is attributed to
(a) nuclear envelope
(b) the specific region of chromosome
(c) the reassembly of some macromolecules of nucleolus, lost during prophase
(d) the rearrangement of histones present in the nucleus

75. Hershey and Chase's work in 1952 is summarized in the drawing given below. Study it and mark the most important feature of this work.

76. The lac operon needs a helper protein that, by binding to the promoter and facilitating attachment of RNA polymerase, accelerate the rate of transcription. This protein is called
(a) catabolic activator protein
(b) inactive repressor protein
(c) essential metabolic protein
(d) amino acid activating enzyme

77. Chromosome number is reduced during meiosis because the process consists of
(a) two cell divisions without any chromosome replication
(b) a single cell division without any chromosome replication
(c) two cell divisions in which half of the chromosomes are destroyed
(d) two cell divisions and only a single round of chromosome replication
(e) four cell divisions with no chromosome replication
Exercise II

1. Given diagram shows variations in the amount of DNA of a developing eukaryote. What the arrow denotes? (FINBO)

2. Following are some statements regarding the primary and secondary antibody response in humans. All the statements are correct, except (2nd INBO)
 (a) lag period (time between the introduction of antigen and appearance of antibodies in blood) in primary response is longer than that in secondary response
 (b) predominant iso-type produced in primary response is IgM while that in secondary response is IgG
 (c) primary antibodies have a higher affinity for antigen as compared to secondary antibodies
 (d) thymus independent antigens produce only IgM type of antibodies in both primary and secondary response

3. Following are some statements regarding replication of a DNA and transcription.
 I. During the replication even the introns are replicated, whereas introns are not transcribed during the process of transcription.
 II. Some of the bases that are incorporated during replication differ from those that are incorporated during transcription.
 III. There is no need of unwinding of strands during transcription, whereas replication process needs the unwinding of DNA strands.
 IV. DNA-RNA hybrid is formed at some stage during both the processes.
 The correct statements are (2nd INBO)
 (a) I and II (b) II and III
 (c) I and IV (d) II and IV

4. A cell membrane contains 60% protein (density 1.33) and 40% phospholipid (density 0.92). When the membrane is centrifuged in NaCl solution of density 1.03 gm/cm³, it will (1st NSEB)
 (a) float
 (b) sediment
 (c) layer in the centre of the NaCl column
 (d) fragments in the NaCl columns

5. Native DNA sample if first boiled for a few minutes and then cooled in a high salt concentration will show (2nd NSEB)
 (a) initial rise and then fall in UV absorbance
 (b) constant UV absorbance
 (c) initial drop and then rise in UV absorbance
 (d) steady drop in UV absorbance

6. The durations of mitotic stages in two situations are tabulated below.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Duration of Mitotic Stages (in Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Interphase</td>
<td>1356 (22.6 h)</td>
</tr>
<tr>
<td>Prophase</td>
<td>126</td>
</tr>
<tr>
<td>Metaphase</td>
<td>24</td>
</tr>
<tr>
<td>Anaphase</td>
<td>5</td>
</tr>
<tr>
<td>Telophase</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>1533 (25.6 h)</td>
</tr>
</tbody>
</table>

Following are some interpretations
I. ‘A’ and ‘B’ indicate the same plant tissue grown at higher and lower temperature respectively.
II. ‘A’ indicates a slow growing plant species and ‘B’ indicates a fast growing plant species.
III. ‘A’ and ‘B’ indicate mitosis taking place in slow and fast growing cells respectively of the same plant.
IV. Both ‘A’ and ‘B’ indicate dormant plant tissues with excessively long interphase.

The correct interpretations is/are (2nd INBO)
(a) I and IV (b) II and III
(c) only IV (d) only II

7. In a chloroplast devoid of photosystem-II, which of the following events will be absent? (1st NSEB)
 (a) Photolysis of water
 (b) Synthesis of ATP
8. The conversion of pyruvate to acetyl Co-A and CO.
 (a) in the cytosol
 (b) in the mitochondria
 (c) depends on the coenzyme biotin
 (d) involves the participation of lipoic acid

8. A large protein molecule, when dissolved in water with a pH of 4.0 has a +2 charge. At pH 7.0, the molecule has no charge (neutral). What would you expect the charge on the molecule to be in water that has a pH of 20.0?
 (a) A positive charge or unknown value
 (b) +2
 (c) Between +2 and neutral
 (d) Neutral
 (e) A negative charge of unknown value

10. The course of infection with HIV is shown in the graph. Lines A and B indicate

 (a) A—Antigen concentration
 B—Helper cell concentration
 (b) A—Antigen concentration
 B—Interferon concentration
 (c) A—Interferon concentration
 B—Antibody titre
 (d) A—Helper cell concentration
 B—Antibody titre

11. Mechanism of phosphorylation is depicted in the diagram below. Study it carefully and mark the correct option.

 (a) The diagram depicts photosynthetic phosphorylation taking place in the chloroplast. The incident light should be shown in the diagram.
 (b) The diagram depicts oxidative phosphorylation taking place in the mitochondria. However, the flow of electrons should be shown in reverse direction.
 (c) Diagram depicts the basic process of both oxidative as well as photosynthetic phosphorylation. However, the proton concentration should be high inside and low outside.
 (d) The diagram correctly depicts the oxidative phosphorylation occurring in all heterotrophic organisms.

12. The development of the current idea that DNA is the genetic material was first demonstrated by Griffith in his famous experiment using smooth and rough strains of Pneumococci. DNA was then called as 'transforming principle'. Consider the following experiment in this connection.

Steps
I. Pneumococci of smooth strains were first grown on culture media.
II. Cells were separated and lysed to collect cell free extract.
III. Transforming principal was isolated from the extract and distributed into two test tubes.
IV. To each test tube crude enzyme preparation containing deoxyribonuclease or deoxyribonuclease was added.
V. Only one test tube was heated to 65°C to after adding the enzyme deoxyribonuclease.

(a) The viscosity was measured for the heated and unheated samples over time.

Relative viscosity

Time (hrs)

Heated

Unheated

(b) Graph showing the relative viscosity over time for heated and unheated samples.
15. Normal concentration of solutes 'A' and 'B' in blood capillaries is 0.9% each. The data indicates that the solutes 'A' and 'B' pass the membrane by (4th NSBE)

<table>
<thead>
<tr>
<th>Solute 'A'</th>
<th></th>
<th>Solute 'B'</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of solute in food (g/100 mL)</td>
<td>Amount absorbed (g)</td>
<td>Amount of solute in food (g/100 mL)</td>
<td>Amount absorbed (g)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
<td>0.05</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>2.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

(a) simple diffusion
(b) capillary action
(c) active transport and simple diffusion respectively
(d) facilitated diffusion and carrier transport respectively

14. If the sequence of nucleotide on mRNA \rightarrow AUGCUGGCAUCUGUA-P, where represents phosphate radical and (OH)--hydroxyl, radical, in which direction translation will occur? (3rd NSBE)
(a) Left to right
(b) Right to left
(c) Both (a) and (b)
(d) Data is insufficient

13. Given figure depicts transport of plastocyanin from cytosol to chloroplast. The sequence (1) is

(a) stromal import sequence
(b) thyakoid targeting sequence
(c) chlorophyll precursor molecule
(d) receptor transport protein

16. The description of 'gate type' of amino acids appropriate in the case of
(a) valine and alanine
(b) serine and methionine
(c) glutamic acid and aspartic acid
(d) methionine and citrulline

17. The figure shows the movement of chromosome during mitosis. Curve A shows the mean distance between the centromeres of the chromosome and the corresponding pole of the spindle. At what time did the anaphase start?
(a) 0 minute
(b) Somewhere between 0 and 10 minutes
(c) 10 minutes
(d) After more than 10 minutes

18. Curve B represents the distance between
(a) the chromosomes in the metaphase
(b) the centrioles
(c) chromatids of a chromosome
(d) homologous chromosomes during anaphase

19. The heated curve indicates a decrease in viscosity, while the unheated curve shows an increase in viscosity. What can be concluded from these data?

(a) Heating causes proteins to unfold and denature.
(b) Heating stabilizes proteins, increasing viscosity.
(c) Heating has no effect on protein structure.
(d) Heating denatures proteins, decreasing viscosity.
20. Oxygen content reduction makes the glycolyse [glycogenesis] intensity increased due to
(a) increase of ADP concentration in cell
(b) increase of NAD\(^+\) concentration in cell
(c) decrease of ATP concentration in cell
(d) decrease of concentration of peroxides and free radicals

21. Which of the following types of amino acids will show the least interaction with water molecules?
(FINBO)
(a) Neutral polar (b) Neutral non-polar
(c) Aliphatic (d) Aromatic charged

22. The following flowchart represents the cellular respiration and its fuels. Identify the substances in empty boxes

23. Coupled biochemical reactions are important in determining thermodynamic order within cells. Consider the following two reactions that occur simultaneously in cells:

\[
L, 3 \text{ biphosphoglycerate} \rightarrow
\]
\[
\text{phosphoglycerate} + P_i
\]
\[
(\delta G^\circ = -49 \text{kJ}) \text{ ADP} + P_i \rightarrow \text{ATP}
\]
\[
(\delta G^\circ = +31 \text{kJ})
\]
Which of the following concerning the above partial reaction is false?
(a) The energy change of the coupled reaction, or net reaction is the sum of the energy changes of the two partial reactions and is \(\delta G^\circ = -418 \text{kJ} \)

24. Niacin is an important growth factor for plants, animals and fungi. Shown below is a biochemical pathway for synthesis of Niacin in the fungus *Neurospora crassa* (2\(^{nd}\) INBO)

25. Mammals contain White Adipose Tissue (WAT) and Brown Adipose Tissue (BAT). WAT is the primary source of lipid used to produce energy in the form of ATP, whereas BAT is the primary source of thermogenesis under cold stress. Which of the following features of the mitochondrial inner membrane of BAT contributes to this effect?
(a) Increased permeability for protons
(b) Less of ATP synthase embedded in the membrane
(c) Absence of electron transport chain
(d) Presence of inhibitors of electron transport chain
26. Among carbohydrates, lipids, proteins and ATP, the relative energy yield in kcal per gram is best represented by
(a) lipids > carbohydrates > ATP
(b) ATP > lipids > proteins
(c) lipids > ATP > carbohydrates
(d) lipids > proteins > ATP

27. Following is the picture of a microsatellite gel of two loci from a chick, its mother and 6 males from a population. Can the biological father of the chick be ascertained from the data?

(a) Yes, the biological father is male 5
(b) Yes, the biological father is male 3
(c) Yes, the biological father could either males 2 or 3
(d) No, at least three loci need to be shown for the decision

28. Which one of the following is made up of only one type of macromolecule?
(a) Virus
(b) Plasmid
(c) Ribosome
(d) Nucleosome

29. A scientist introduced bacterial plasmids into bakers' yeast. However, the cells lost these genes over a period of time. Which of the genes needs to be inserted into the bacterial plasmid to overcome this problem?
(a) Centromere
(b) Yeast origin of replication
(c) Telomere
(d) Bacterial origin of replication

30. A red blood corpuscle (RBC) was kept in a solution and treated so that it became inside-out. What will be the polarity of the phospholipid bilayer in this cell?

31. Some vitamins need to be supplied regularly in our daily diets while others may be supplied intermittently. Examples of these two types respectively, are
(a) Vit-C and Vit-D
(b) Vit-A and Vit-B₆
(c) Vit-D and Vit-E
(d) Vit-B₆ and Vit-B₁₂

32. Which of the following pathways depicts a generalized glycolytic scheme most accurately?
(a) Glucose
 \[a \rightarrow b \rightarrow c \rightarrow d \rightarrow f \rightarrow g \rightarrow h \]
 \[e \rightarrow \text{Pyruvate} \]
(b) Glucose
 \[a \leftrightarrow b \leftrightarrow c \leftrightarrow d \leftrightarrow g \leftrightarrow h \]
 \[e \rightarrow \text{Pyruvate} \]
(c) Glucose
 \[a \leftrightarrow b \leftrightarrow c \leftrightarrow d \leftrightarrow f \rightarrow g \rightarrow h \]
 \[e \rightarrow \text{Pyruvate} \]
(d) Pyruvate \rightarrow Glucose \rightarrow a \rightarrow b \rightarrow c

33. Membrane compositions of three cell types are tabulated below.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Membrane Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protein</td>
</tr>
<tr>
<td>Rat liver cell</td>
<td>40</td>
</tr>
<tr>
<td>Maize leaf cell</td>
<td>40</td>
</tr>
<tr>
<td>E. coli</td>
<td>74</td>
</tr>
</tbody>
</table>

The percentage composition of inner mitochondrial membrane is likely to be
(a) 40 : 30 : 20
(b) 42 : 33 : 9
(c) 43 : 33 : 15
(d) 76 : 24 : 0

34. Which of the following facts supports the hypothesis that "viruses are not the fore-runners of cellular organisms but are derived from them"?
(a) Viruses use the same genetic code as cellular organisms
(b) Viral proteins have the same basic amino acids as cellular organisms
(c) Viruses need the cellular machinery for replication
(d) Essential for viral replication are identical to those needed for cellular replication

35. Following radioactive precursors were used to label different macromolecules in the cells. These precursors are incorporated during active synthesis of the macromolecules.

<table>
<thead>
<tr>
<th>Precursors</th>
<th>Macromolecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>((^3)H) Thymidine</td>
<td>DNA</td>
</tr>
<tr>
<td>((^14)C) Uridine</td>
<td>RNA</td>
</tr>
<tr>
<td>((^35)S) Methionine</td>
<td>Protein</td>
</tr>
</tbody>
</table>

A. In which of the following mammalian cell types would these precursors be incorporated? Indicate by using (+) for incorporation and (−) for no incorporation in the table given below.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>((^3)H) Thymidine</th>
<th>((^14)C) Uridine</th>
<th>((^35)S) Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal mucosal cells</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>Neurons</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>RBC</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

B. If the above cell types are exposed briefly to ionizing radiations, what would be the pattern of incorporation of these precursors? Indicate by using (+) for incorporation and (−) for no incorporation in the table given below.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>((^3)H) Thymidine</th>
<th>((^14)C) Uridine</th>
<th>((^35)S) Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal mucosal cells</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>Neurons</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>RBC</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

36. Read the following observations and some interpretations.

Observations
1. To preserve the sweet taste of a freshly picked corn, it is immersed in boiling water for a few minutes.
2. The sweetness of honey decreases if it is heated.
3. Commercial fructose cannot be used as a sweetener of hot drinks.

Interpretations
I. The properties of sugar vary with temperature.
II. Enzyme that converts starch to glucose is activated due to rise in temperature.
III. Some sugars are thermostable hence their properties do not change with change in temperature.
IV. Enzyme that converts glucose to starch is destroyed due to rise in temperature.

Mark the correct interpretation against each observation.
1. ______
2. ______
3. ______

37. Malarial parasite, *Plasmodium falciparum*, is extremely sensitive to any oxidative stress in the cell. The antimalarial drug 'Primaquine' is known to induce formation of H\(_2\)O\(_2\) and other reactive oxygen species. Fava beans are also known to contain a chemical which is responsible for raising the concentration of reactive oxygen species. Glucose-6-phosphate-dehydrogenase (G6PD) is an enzyme that helps cells produce a reductant NADPH which protects cells from oxidative damage caused by H\(_2\)O\(_2\) and other reactive species.

Indicate whether the following statements are true or false by putting a tick mark (✓) in the appropriate boxes in the table.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>((^3)H) Thymidine</th>
<th>((^14)C) Uridine</th>
<th>((^35)S) Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal mucosal cells</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>Neurons</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>RBC</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

A. G6PD deficient individual is unlikely to develop *P. falciparum* infection.
B. Primaquine treatment in G6PD normal person is more harmful to the individual than that in G6PD-deficient person.
C. Eating Fava beans would be more beneficial for a malaria patient who is G6PD deficient than one who has normal G6PD.
D. In areas where malaria is endemic, natural selection would eliminate individuals with G6PD deficiency.
38. Dinitrophenol is a chemical that inhibits the F_0-F_1 ATP synthase molecule, located in the inner wall of mitochondrion. What would be the effects of accidental consumption of this chemical? Put tick marks (✓) in the appropriate boxes in the table given below.

<table>
<thead>
<tr>
<th>Effects</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased glycongen and fat biosynthesis</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Decreased rate of metabolism</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Increased sweating</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Decreased mean body temperature</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Increase in heat production</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Decreased cardiac output</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

39. Rat cell nuclei were isolated and mixed with nuclease. The DNA was then extracted and run on agarose gel. The results obtained are shown in the diagram below. The wells 1-4 represent four such DNA samples while lane 5 indicates the molecular weight markers. Mark the correct interpretation of the results by putting a tick mark (✓) in the appropriate box in the table. Select from the options given below

(a) DNA from four different tissues of rat
(b) DNA mixed with nuclease for the different periods of time
(c) DNA at different stages of cell cycle
(d) Varying content of single and double stranded DNA in the cells

Which are the most likely causes of the defect? Put a tick mark (✓) in the appropriate box in the answer sheet.

(a) I–Deficiency of enzyme PT and PG
(b) II–Deficiency of enzyme PT
(c) III–Deficiency of enzyme PG
(d) II–Receptor deficiency
(e) III–Deficiency of enzyme PT
(f) I–Receptor deficiency
(g) II–Deficiency of enzyme PT or PG
(h) III–Deficiency of enzyme PG or PT

40. Following is the list of biomolecules that can diffuse through a synthetic lipid bilayer to a varying extent. Arrange them in the decreasing order of this ability and fill your answers in the answer sheet.

1. Ethanol
2. Water
3. O_2
4. K^+
5. DNA
6. Glucose
41. Lysosomes are cell organelles filled with hydrolytic enzymes. These enzymes are delivered to lysosomes through ER and Golgi apparatus. M6P is a unique marker group attached to these enzymes that is recognized by the receptors. Two enzymes namely, PG invert mannose to M6P as follows:

\[
\text{M6P} \xrightarrow{\text{Intermediate}} \text{M6P}
\]

Patients with ‘cell disease’ produce perfectly healthy hydrolases but instead of being delivered to lysosomes, in these patients, they are delivered outside.

(a) \(\text{PG} \)
(b) \(\text{M6P} \)
(c) \(\text{Intermediate} \)
(d) \(\text{A} \)

42. A typical growth curve of a bacterial population is shown. Four stages in the growth curve are marked as a, b, c and d. Match them against the correct population (P, Q, R, S). Fill in your answers in the table given below.

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of cells (in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Living</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
</tr>
<tr>
<td>Q</td>
<td>400</td>
</tr>
<tr>
<td>R</td>
<td>225</td>
</tr>
<tr>
<td>S</td>
<td>550</td>
</tr>
</tbody>
</table>

43. Phenobarbital is a compound that is highly effective as an anticonvulsant agent. It has a \(pK_a \) of 7.41.

44. Using Henderson Hasselbach equation, \(pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right) \), calculate the ratio of drug ionized to unionized in

(Fill your answers in the answer sheet.)

A. stomach (pH 2)
B. duodenum (pH 6.0)
C. jejunum (pH 7.4)
D. Which of the above pH values, is the most appropriate for the drug absorption?
E. A person has accidentally consumed the drug in higher amounts. In order to increase the excretion of the drug from renal tubules, which of the following measures will help the most? Put a tick mark (\(\checkmark \)) in the appropriate box in the answer sheet.

(a) Administering urinary acidifiers.
(b) Administering urinary alkalinizers
(c) Ingestion of excess water.
(d) Administering anti-diuretic drugs.

44. Match each item in column A with one in column B to which it is most closely associated.

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Lysosomes</td>
<td>1. Kreb's cycle</td>
</tr>
<tr>
<td>B. Rough ER</td>
<td>2. Bacterial DNA anchorage</td>
</tr>
<tr>
<td>C. Genome</td>
<td>3. Microtubule-organizing centre</td>
</tr>
<tr>
<td>D. Mitochondria</td>
<td>4. Protein modification and targeting</td>
</tr>
<tr>
<td>E. Centriole</td>
<td>5. Complete set of genetic instructions</td>
</tr>
<tr>
<td>F. Mesosome</td>
<td>6. Starch storage</td>
</tr>
<tr>
<td>G. Lysosome</td>
<td>7. Immunoglobulin</td>
</tr>
<tr>
<td>H. Microfilament</td>
<td>8. Lipid synthesis</td>
</tr>
<tr>
<td>I. Smooth ER</td>
<td>9. Digestive enzymes</td>
</tr>
<tr>
<td>J. Golgi apparatus</td>
<td>10. Cytoskeleton</td>
</tr>
</tbody>
</table>
45. The diagram represents a function of the nucleic acid, DNA. Based on the diagram, what is the most likely nucleotide sequence of the messenger RNA. Put an X in the appropriate box.

46. For an exponentially growing culture of microorganisms, the specific growth rate (μ) is a parameter that gives the cell biomass (g) synthesized per gram of existing cell biomass per unit of time (usually, per hour). This rate (μ) is inversely related to the doubling time of the culture, $t_2 = \ln 2 / \mu$. Hence, the shorter the doubling time of cells, the higher is the specific growth rate of the culture.

Two microorganisms, 'A' and 'B', were inoculated each in a fresh growth medium with an initial optical density (OD) of 0.1. A lag phase of 1 h duration was observed for both cultures. Three h hours after inoculation, the OD of culture A was while that of the culture B was 16.8.

Estimate the specific growth rate for culture A and estimate the specific growth rate for culture B.

47. Calculate the intracellular millimolar (mM) concentration of potassium in *Escherichia coli*. If the measured potassium content is 7.8 micrograms per milligram of dry cell mass. Assume all potassium ions are free in the cytosol (not bound to macromolecules), and that the intracellular volume is 2 microlitres per milligram of dry cell mass. The atomic weight of potassium is 39 Daltons.

48. A species of fungus can dissipitate glucose and produce ATP in two ways.

Aerobically:

$$\text{C}_6\text{H}_12\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$$

Anaerobically:

$$\text{C}_6\text{H}_12\text{O}_6 \rightarrow 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2$$

This fungus is cultivated in a glucose-containing medium. Half of the total ATP production is anaerobic.

1. What is the ratio between the rates of aerobic and anaerobic catabolism of glucose?
2. What is the expected oxygen consumption (mole per mole of consumed glucose)?
3. What is the expected CO$_2$ evolution (mole per mole of consumed glucose)?

For calculations, assume that glucose is fermented via the usual Embden-Meyerhof-Parnas glycolytic pathway and that oxidative phosphorylation proceeds with maximum efficiency.

49. The growth of bacteria is studied, for a period of exactly one duplication, the sample is moved from an environment with a light nitrogen isotope (^{14}N) to an environment with heavy nitrogen isotope (^{15}N). After this, the sample is again transferred to the environment with light nitrogen for a period of two duplications.

1. What is the composition of double-stranded DNA (in %) of light and heavy nitrogen isotopes after the experiment?
 A. Only light B. In between C. Only heavy

From these cells two types of mRNA (mRNA [A] and mRNA [B], respectively, expressed from different genes) were isolated. Both mRNAs were found to contain an identical number of nucleotides. The nucleotide composition of each mRNA was estimated as (see the table).

<table>
<thead>
<tr>
<th>mRNA</th>
<th>A%</th>
<th>G%</th>
<th>C%</th>
<th>T%</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>32</td>
<td>28</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>27</td>
<td>13</td>
<td>0</td>
<td>23</td>
</tr>
</tbody>
</table>

2. What is the nucleotide composition of double-stranded genomic DNA in the codon part of the genes A and B, respectively.
3. What do the curves in the plot below represent the melting profile of the coding part of gene A and B, respectively?

50. Genetic engineers construct recombinant DNA molecules using two enzymes restriction endonuclease and DNA ligase. What do these two enzymes do?
 (a) They catalyze different reactions: restriction endonuclease joins fragments into larger molecules—DNA ligase hydrolyses DNA into smaller fragments.
 (b) They catalyze different reactions—restriction endonuclease hydrolyses DNA into smaller fragments—DNA ligase joins fragments into larger molecules.
 (c) They both hydrolyse DNA into smaller fragments.
 (d) They both join fragments of DNA into larger molecules.
 (e) They catalyze different hydrolysis reactions—restriction endonuclease hydrolyses bacterial plasmid DNA; DNA ligase hydrolyses DNA from eukaryotic cells.

51. Various forces are important in the interactions contributing to the tertiary structure of a protein. The figure shows several possible interactions. Match the numbered interactions with their correct names.

52. Treatment with an antibiotic drug helps overcome many bacterial infections. Why is penicillin toxic to many bacteria?
 (a) It interferes with DNA replication
 (b) It inhibits transcription
 (c) It disrupts translation
 (d) It blocks protein synthesis
 (e) It inhibits cell wall formation

53. A yeast extract contains all the enzymes required for alcohol production. The extract is incubated under anaerobic conditions in 1 litre of medium containing: 200 mM glucose, 20 mM ADP, 40 mM ATP, 2 mM NADH, 2 mM NAD⁺ and 20 mM Pi (inorganic phosphates). Ethanol production can be summarized by the following equation:

$$C_8H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2 + 2ATP$$

What is the maximum amount of ethanol that can be produced under these conditions?
 (a) 2 mM
 (b) 20 mM
 (c) 40 mM
 (d) 200 mM
 (e) 400 mM

54. The diagram represents an eukaryotic cell cycle divided into 5 phases.
Match phases A-E of the diagram with the cell cycle stages shown in the table and match the processes F-J with the appropriate cell cycle stage shown in the Table.

F. Cytokinesis
G. Main growth period of the cell
H. Duplication of DNA
I. Quiescent cells
J. Last stage of interphase

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. G₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. G₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. G₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55. The amount of DNA in a cell can be determined by measuring the fluorescence of a dye that binds in direct proportion to the amount of DNA.

The histogram below represents the fluorescence of an eukaryotic germ cell during different stages of cell division (I, II, III, IV and V).

![Histogram of relative fluorescence](image)

56. The diagram shows a single-celled green microalga from the ocean. Its single chloroplast and several other cellular components are labelled. Which components contain the following:

- A. Thylakoid membrane
- B. Stroma of chloroplast
- C. Cytosol
- D. Plasma membrane
- E. Cell wall
- F. Flagellum

57. A widely-held theory is that mitochondria evolved from endosymbiotic bacteria. Indicate which statements support this theory answering Yes (Y) or No (N).

1. Mitochondria have their own DNA
2. Mitochondria have their own ribosomes
3. Mitochondria are derived from pre-existing, mitochonndria by division
4. Human mitochondrial genes lack introns
5. Some mitochondrial gene DNA sequences are similar to those of certain aerobic bacteria
58. Considering the roles of membrane lipids and proteins, and the functions of the following membranes, match the protein/lipid ratios given below:

A. Scholl membrane (myelin sheath)
B. Erythrocyte (red blood cell) membrane
C. Inner mitochondrial membrane

<table>
<thead>
<tr>
<th>Protein/Lipid Ratio</th>
<th>Answer [A/B/C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>2:4</td>
</tr>
<tr>
<td>3</td>
<td>3:1</td>
</tr>
</tbody>
</table>

59. In a laboratory of Molecular Biology, the amino acid sequence of an armadillo intestine protein has been partially determined. The tRNA molecules used in the synthesis have the following anticodons:

3'UAC 5' 3'CGA 5' 3'GGA 5' 3'GCU 5' 3'UUA 5' 3'GGA 5' 3'UAC 5' 3'CGA 5' 3'GGA 5' 3'GCU 5' 3'UUA 5' 3'GGA 5'

Mark the DNA nucleotide sequence of the complementary chain to the DNA chain that encodes for the armadillo intestine protein.

(a) 5'ATG-GCT-GCT-CTG-GAA-CTC-3'
(b) 5'ATG-GCT-GCT-CTG-GAA-CTC-3'
(c) 5'ATG-GCT-GCT-GCT-GCT-CTC-3'
(d) 5'ATG-GCT-GCT-GCT-GCT-CTC-3'

60. In the following table, some components, processes, and structures of mitochondria are presented. Match both columns and identify the correct combination.

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turner</td>
<td>Outer mitochondrial</td>
<td>Inner mitochondrial</td>
</tr>
<tr>
<td>membrane</td>
<td>membrane</td>
<td>membrane</td>
</tr>
<tr>
<td>1. Porin</td>
<td>I. ATP synthase</td>
<td>II. Enzymes of fatty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>acid oxidation</td>
</tr>
<tr>
<td>2. ATP</td>
<td></td>
<td>III. Enzymes of citric</td>
</tr>
<tr>
<td>synthase</td>
<td></td>
<td>acid cycle</td>
</tr>
<tr>
<td>3. Coenzyme Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Monoamine oxidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Enzymes of RNA synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Enzymes of mitochondrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>membrane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Answers

Exercise I

1. (b) 2. (a) 3. (d) 4. (b) 5. (a) 6. (c) 7. (a) 8. (c) 9. (b) 10. (b)
11. (c) 12. (a) 13. (b) 14. (a) 15. (b) 16. (c) 17. (c) 18. (b) 19. (a) 20. (c)
21. (a) 22. (d) 23. (a) 24. (a) 25. (a) 26. (c) 27. (b) 28. (c) 29. (b) 30. (d)
31. (c) 32. (d) 33. (a) 34. (c) 35. (b) 36. (b) 37. (a) 38. (d) 39. (d) 40. (b)
41. (c) 42. (d) 43. (b) 44. (d) 45. (d) 46. (c) 47. (a) 48. (c) 49. (a) 50. (a)
51. (a) 52. (b) 53. (c) 54. (a) 55. (b) 56. (a) 57. (a) 58. (d) 59. (a) 60. (a)
61. (b) 62. (b) 63. (c) 64. (c) 65. (c) 66. (d) 67. (c) 68. (c) 69. (c) 70. (c)
71. (a) 72. (b) 73. (a) 74. (b) 75. (d) 76. (a) 77. (d)

Exercise II

1. (b) 2. (c) 3. (d) 4. (b) 5. (d) 6. (d) 7. (a) 8. (d) 9. (c) 10. (d)
11. (b) 12. (a) 13. (c) 14. (b) 15. (e) 16. (c) 17. (c) 18. (c) 19. (c) 20. (a)
21. (b) 22. (a) 23. (c) 24. (d) 25. (a) 26. (c) 27. (a) 28. (b) 29. (b) 30. (a)
31. (a) 32. (c) 33. (d) 34. (c)
25. **Brown Adipose Tissue (BAT)** or brown fat is one of two types of fat or adipose tissue (the other being white adipose tissue) found in mammals. It is especially abundant in newborns and in hibernating mammals. Its primary function is to generate body heat in animals or newborns that do not shiver. Its contrast to white adipocytes (fat cells), which contain a single lipid droplet, brown adipocytes contain numerous smaller droplets and a much higher number of mitochondria, which contain iron and make it brown. Brown fat also contains more capillaries than white fat, since it has a greater need for oxygen than most tissues.

The mitochondria in an eukaryotic cell utilize fuels to produce energy (in the form of ATP). This process involves storing energy as a proton gradient, also known as the proton motive force (PMF), across the mitochondrial inner membrane. This energy is used to synthesize ATP when the protons flow across the membrane (down their concentration gradient) through the ATP synthase enzyme; this is known as chemiosmosis.

In warm-blooded animals, body heat is maintained by signaling the mitochondria to allow protons to run back along the gradient without producing ATP. This can occur since an alternative return route for the protons exists through an uncoupling protein in the inner membrane. This protein, known as uncoupling protein 1 (thermogenin), facilitates the return of the protons after they have been actively pumped out of the mitochondria by the electron transport chain. This alternative route for protons uncouples oxidative phosphorylation and the energy in the PMF is instead released as heat. To some degrees, all cells of endotherms give off heat, especially when body temperature is below a regulatory threshold. However, brown adipose tissue is highly specialized for this non-shivering thermogenesis. First, each cell has a higher number of mitochondria compared to more typical cells. Second, these mitochondria have a higher-than-normal concentration of thermogenin in the inner membrane.

26. Carbohydrate contains 15.8 kilojoules (3.75 kilocalories) and proteins 16.8 kilojoules (4 kilocalories) per gram, while fats contain 37 kilojoules (9 kilocalories) per gram. In the case of protein, this is somewhat misleading as only some amino acids are usable for fuel. The standard amount of energy released from hydrolysis of ATP can be calculated from the changes in energy under non-natural (standard) conditions, then correcting to biological concentrations. The net change in heat energy (enthalpy) at standard temperature and pressure of the decomposition of ATP into hydrated ADP and hydrated inorganic phosphate is -20.5 kJ/mol, with a change in free energy of -3 kJ/mol. The energy released by cleaving either phosphate (P_1) or pyrophosphate (PP_1) unit from ATP at standard state of 1 M are

$$\text{ATP} + H_2O \rightarrow \text{ADP} + P_1$$

$\Delta G^\circ = -30.5 \text{ kJ/mol} \ (-7.3 \text{ kcal/mol})$

$$\text{ATP} + H_2O \rightarrow \text{AMP} + PP_1$$

$\Delta G^\circ = -45.6 \text{ kJ/mol} \ (-10.9 \text{ kcal/mol})$

35. A.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Thymidine</th>
<th>Uridine</th>
<th>Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>mucosal cells</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RBC</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

B.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Thymidine</th>
<th>Uridine</th>
<th>Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>mucosal cells</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Neurons</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RBC</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

36. 1, IV, 2, I, 3, I

37. | Statement | True | False |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
38. | No. | Effects | T | F |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>d glycogen and fat biosynthesis</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>d rate of metabolism</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Increased sweating</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Decreased mean body temperature</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Increase in heat production</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Decreased cardiac output</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

39. (b)

40. 3 > 2 > 1 > 6 > 4 > 5

41. (d)

42. | Population | Stage |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>a</td>
</tr>
<tr>
<td>Q</td>
<td>b</td>
</tr>
<tr>
<td>R</td>
<td>c</td>
</tr>
<tr>
<td>S</td>
<td>d</td>
</tr>
</tbody>
</table>

43. A: 1: 257000 or 3.89 x 10^-6 to 4 x 10^-6 or 10^-1.41 or 0.99% or 1/10^5.41

B: 1: 25 or 1: 26 or (3.84 x 10^-2 to 4 x 10^-2) or 10^-1.41 or 96% or 1/10^1.41

C: 1: 1.02 or 0.97 to 1.00

D: pH2 or A or stomach

E. (b)

44. A-6, B-7, C-5, D-1, E-3, F-2, G-9, H-10, I-8, J-4

45. UCGAUU

46. 1. \(\mu(A) = 0.7 \text{ g/gh} \)

2. \(\mu(B) = 1.4 \text{ g/gh} \)

47. 100 nm

48. 1. 1, 16 or 1, 18 or 1, 19

2. 0, 30 or 0, 32 or 0, 353

3. 2, 2 or 2, 21 or 2, 24

49. 1. A = 75%, B = 25%, C = 0%

2. Gene A: A = 20%, C = 30%, G = 30%, T = 20%, U = 0%

Gene B: A = 30%, C = 20%, G = 20%, T = 30%, U = 0%

3. A = 5, B = 4

50. (b)

51. 1 \(\rightarrow\) (a), 2 \(\rightarrow\) (b), 3 \(\rightarrow\) (d), 4 \(\rightarrow\) (e)

52. (e)

53. (b)

54. 1 - C - J, 2 - D - F, 3 - A - G, 4 - B - H, 5 - E - I

55. (a)

56. 1 - A, 2 - B, 3 - E, 4 - C

57. 1-5 : Yes

58. 1 - B, 2 - C, 3 - A

59. (b)

60. (c)