Early Ideas of Heredity

- traits, genetic material transmitted directly from two parents to offspring, “blending” together every generation
- BUT population would become uniform (contrary to everyday and experimental observations)

Modern Genetics

- the gene idea: discrete heritable units (genes) passed on from parents to offspring and retain separate identities
- documented by Gregor Mendel in experiments using garden peas
Gregor Mendel

- b. Czech Republic, 1822
- Augustinian monk
- careful experimentation and applied mathematics to study inheritance in garden pea plants
- laws of inheritance

Mendel and the Garden Pea

- Pea plants present several advantages
 - many varieties
 - distinct heritable features (characters)
 - different variants for each character (traits)
- small and easy to grow
- short generation time
- sexual organs enclosed in flower
- self-fertilization
- cross fertilization

Cross Fertilization

TECHNIQUE

Parental generation (P)
Stamens
Carpel

RESULTS
First filial generation of offspring (F1)
Mendel and the Garden Pea

- Mendel’s experimental design
 - allowed pea plants to self-fertilize for several generations
 - assured pure-breeding (true) traits
 - performed crosses between varieties exhibiting alternative character forms
 - Also used reciprocal crosses
 - permitted hybrid offspring to self-fertilize for several generations

Monohybrid Crosses

- Monohybrid cross - a cross that follows only 2 variations on a single trait (ie- white and purple colored flowers)

- Mendel studied 7 characteristics
 - each with 2 variants
What Mendel Found
• white flower and purple flower cross
 • F₁ Generation (first filial)
 - offspring flower color resembled one parent
 (no intermediate color)
 - all purple flowers
 (dominant trait) and
 none exhibited white
 flowers (recessive trait)

What Mendel Found
• F₂ Generation (second filial)
 • F₁ self-cross produced some
 plants exhibiting white flowers
 (recessive form reappeared)
 • 3:1 phenotypic ratio
 • Mendelian Ratio
 • ¼ of recessives
 always true breeding
 • disguised 1:2:1 ratio
 (geneotypic ratio)

F₂ Generation is a
Disguised 1:2:1 Ratio
• Alternative forms of each character (seed color) were segregating among the progeny

• ALLELES!

• This segregation of traits led Mendel to his understanding of heredity

Mendel’s observations:

• Plants inherited intact traits (no intermediate appearance)

 - For each pair of alternative forms of a trait, one not expressed in F1 hybrids (latent), but reappeared in some F2 individuals

 - Pairs of trait segregated among progeny of cross (e.g. some flowers white, others purple)

 - Alternative traits expressed in F2 generation in 3:1 ratio (Mendelian ratio)

Mendel’s Model

• alternative versions of genes account for variation

• for each character, offspring inherits two copies of gene, one from each parent

 • chromosomes, alleles
 • homozygous - same alleles
 • heterozygous - different alleles
Mendel’s Model

- expression of alleles dependent on dominance; only one allele expressed
- alleles for heritable character segregate during gamete formation (law of segregation)

Principle of Segregation

- Mendel’s first law of Heredity
 - The two alleles for a gene segregate during gamete (haploid) formation; rejoin at random, one from each parent, during fertilization
 - 2nd meiotic division produces gametes containing only one homologue for each chromosome
 - blending model would predict pale purple flowers.
 - Instead, F₁ hybrids all have purple flowers.

Using a Punnett Square

- Pp × Pp possible progeny genotype
- Called: monohybrid cross
- Results homozygous dominant or homozygous recessive or heterozygous
- F₁ and F₂ results
Punnett Square = Symbolic Analysis

- Uppercase = dominant allele (P = purple flowers)
- Lowercase = recessive allele (p = white flowers)
 - True breeding purple flowers: genotype = PP
 - True breeding white flowers: genotype = pp
 - Heterozygote (phenotype = purple flowers): genotype = Pp

- PP (homozygous dominant) → can produce only P gametes
- pp (homozygous recessive) → can produce only p gametes
 - Union (PP X pp) can only produce Pp (heterozygous) offspring in F1 generation
 - P dominant, so all have purple flowers

- F1 individuals (Pp) self-fertilize = produce BOTH P and p gametes
 - Visualize F2 possibilities using Punnett square → clearly predicts F2 generation has 3:1 phenotypic ratio = 1:2:1 genotypic ratio
 - 1 PP (purple)
 - 2 Pp (purple)
 - 1 pp (white)
Using a Punnett Square

Pp X Pp possible progeny genotypes
Called: monohybrid cross
Results homozygous dominant or homozygous recessive or heterozygous

Dominant/Recessive Inheritance

<table>
<thead>
<tr>
<th>Table 12.1</th>
<th>Some Dominant and Recessive Traits in Humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character</td>
<td>Phenotype</td>
</tr>
<tr>
<td>Baldness</td>
<td>Tall</td>
</tr>
<tr>
<td>Blue eyes</td>
<td>Blue-eyed</td>
</tr>
<tr>
<td>Collarollars</td>
<td>Collarollars</td>
</tr>
<tr>
<td>Facial hair</td>
<td>Facial hair</td>
</tr>
<tr>
<td>Fingers</td>
<td>Feathery</td>
</tr>
<tr>
<td>Fingerprints</td>
<td>Full prints</td>
</tr>
<tr>
<td>Freckles</td>
<td>Freckled</td>
</tr>
<tr>
<td>Hair color</td>
<td>Brown</td>
</tr>
<tr>
<td>Height</td>
<td>Tall</td>
</tr>
<tr>
<td>Hump</td>
<td>Humped</td>
</tr>
<tr>
<td>Ickles</td>
<td>Icky</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Intelligent</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Prepared</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Rapid</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Right</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Smart</td>
</tr>
<tr>
<td>Intelligence</td>
<td>Strong</td>
</tr>
<tr>
<td>Intelligence</td>
<td>True</td>
</tr>
</tbody>
</table>

Principle of Independent Assortment

- Are different traits inherited independently?
- Dihybrid Cross – follows behavior of 2 different characters in a single cross
 - Mendel followed characters of pea shape [round (R) & wrinkled (r)] and color [yellow (Y) vs green (y)]

RrYY X rryy → RrYy (dihybrid; round, yellow seeds)
Dihybrid Cross – Principle of Independent Assortment

- F1 dihybrids self-pollinated (RrYy X RrYy)
 - if alleles transmitted in same combination as parental cross (RY, ry), expect F2 to exhibit parental phenotypes, round yellow (R_Y_) and wrinkled green (rryy) in 3:1

- if traits independent, also expect to see round green (R_yy) and wrinkled yellow (rY_) seeds

Dihybrid Cross – Principle of Independent Assortment

- RrYy X RrYy
 possible gametes produced: RY, Ry, rY, ry

Make Punnett square with these gametes to generate all possible progeny.

4 X 4 square with 16 possible outcomes

- 9 round yellow
 - 3 wrinkled yellow
 - 3 round green
 - 1 wrinkled green

traits that behave independently have 9:3:3:1 phenotypic ratio
What did Mendel Observe?

- 9:3:3:1 phenotypic ratio

- Mendel called this **Independent Assortment (Mendel’s Second Law of Heredity)**
 - Genes that are located on different chromosomes assort independently of one another
 - This does not alter the segregation of individual pairs of alleles for each gene
 - Round vs Wrinkled still at 3:1 phenotypic ratio
 - Yellow vs Green still at 3:1 phenotypic ratio

Mendel’s Laws of Heredity

Principle of Segregation - the two alleles for a gene segregate during gamete (haploid) formation and are rejoined at “random” fertilization

Independent Assortment
- Genes that are located on different chromosomes assort independently of one another, one from each parent
Predicting the Result of a Cross: Probability

- 2 events *mutually exclusive* if both cannot happen at same time (i.e. – heads and tails on 1 coin flip)
- But with multiple coin flips, each flip represents an *independent event*.
- Rule of Addition:
 - For two mutually exclusive events, the probability of either event occurring is the sum of the individual probabilities.

Rule of Addition

- Ex- 6 sided die.
 - Probability of rolling each number (1-6) is 1/6; each outcome is mutually exclusive.
 - Probability of rolling either a 2 or a 6:
 \[\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3} \]

- Ex- heterozygous purple flower cross (Pp X Pp)
 - Probability of being heterozygous:
 \[\frac{1}{4} + \frac{1}{4} = \frac{1}{2} \]

Rule of Multiplication

- States that probability of 2 independent events both occurring is the product of their individual probabilities.
 - Consider F1 progeny (Pp)
 - Probability that an F2 individual will be pp = prob of getting p from male *times* prob of getting p from female = \(\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \)
 - Basis for Punnett square
Dihybrid Cross Probabilities are Based on Monohybrid Cross Probabilities

- F1 X F1 cross = Pp X Pp
 - 4 possible outcomes, ¾ probability dominant phenotype, ¼ probability recessive phenotype
 - Use this and product rule to predict dihybrid cross outcome
 - Ex: probability of individual with wrinkled green (rryy) seeds in F2 generation = prob of getting wrinkled seeds (1/4) times prob of getting green seeds (1/4), or 1/16.

- Think of dihybrid cross as consisting of 2 monohybrid crosses!

Testcross = Revealing Unknown Genotypes

- Individual with unknown genotype crossed with homozygous recessive genotype.

![Diagram of Testcross]

Testcross

Technique

- Dominant phenotype, unknown genotype: PP or Pp
- Recessive phenotype, known genotype: pp

Predictions

- If purple-flowered parent is PP or Pp
- If purple-flowered parent is pp

Results

- All offspring purple
- ½ offspring purple and ½ offspring white
More on Testcross

- Recessive phenotype in offspring = test individual is heterozygote
- Also use with dominant dihybrids of unknown genotype

<table>
<thead>
<tr>
<th>TABLE 12.2 Dihybrid Testcross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Genotype</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>A bb</td>
</tr>
<tr>
<td>AaBb</td>
</tr>
<tr>
<td>Aabb</td>
</tr>
<tr>
<td>Aabb</td>
</tr>
</tbody>
</table>

Test cross

- A ?_ B ?_

- a
- a
- b
- b

Extending Mendelian Genetics

- Mendel’s model oversimplified
 - assumed that each trait determined by a single gene, for which only 2 alternative alleles exist
 - alleles not always completely dominant or recessive
 - single gene might have > 2 alleles
 - single gene might produce multiple phenotypes
Extending Mendelian Genetics

- Phenotype considerations
 - Polygenic inheritance
 - More than 1 gene can affect a single trait
 - continuous variation
 - The greater the number of genes influencing a character, the more continuous the expected distribution of character variation will be.

- such characters are called quantitative traits

<table>
<thead>
<tr>
<th>Extending Mendelian Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>pleiotropy</td>
</tr>
<tr>
<td>- most genes have multiple phenotypic effects</td>
</tr>
<tr>
<td>- pleiotropic allele may be dominant or recessive for different phenotypes</td>
</tr>
<tr>
<td>- effects are difficult to predict; a gene that affects 1 trait often performs other, unknown functions</td>
</tr>
<tr>
<td>- characteristic of many inherited disorders in humans (cystic fibrosis and sickle cell anemia)</td>
</tr>
<tr>
<td>- multiple symptoms (phenotypes) can be traced to a single gene defect</td>
</tr>
</tbody>
</table>
Dominance not always complete
- **Incomplete dominance** – heterozygote is intermediate in appearance between 2 homozygotes. Indicates neither appearance is dominant
 - When heterozygotes cross, progeny have 1:2:1 phenotypic ratio

Codominance – when 2 or more alleles of a gene are each dominant to other alleles but not to each other.
- Distinguished from incomplete dominance by appearance of heterozygote phenotype
- Phenotype of heterozygote for codominant alleles exhibit characteristics of both homozygous forms
- Ex – human blood types
 - Cross between AA individual and BB individual yields AB individuals

Human ABO Blood Group System
Different phenotypes of human blood groups based on response of immune system to proteins on surface of RBCs.
- Homozygotes = single type protein found on surface RBCs
- Heterozygotes = 2 types proteins found on surface RBCs, leading to codominance
 - human gene that encodes enzyme that adds sugar molecules to lipids on the surface of red blood cells
 - P adds galactose
 - P⁺ adds galactosamine
 - i adds no sugar
Extending Mendelian Genetics

- Environmental effects
 - degree of allele expression may depend on the environment
 - Not limited to external environment
 - i.e. – the ch allele in Siamese cats encodes heat sensitive version of enzyme tyrosinase (involved in albinism).
 - CH version inactivated at temp above 33C; surface of torso and head above 33C = whitish coat

- Genes may have more than 2 alleles
 - ABO blood types

- Epistasis
 - one gene interferes with the expression of another gene
 - Corn
 - Cross 2 true breeding white corn (lacking purple pigment anthocyanin) and get all purple corn!
 - Reason: 2 genes involved in producing pigment; lead to a modified 9:7 ratio instead of the usual F2 9:3:3:1 ratio

Epistatic Interactions

If the white hairs were due to a recessive allele for a single gene, expect white offspring

Means 2 genes encode for necessary enzyme in pigment production.

Unless both enzymes active
No pigment expressed
Epistatic Interactions Continued

- Epistasis in Labrador Retrievers
 - Coat color in labs due to interaction
 - 2 genes: \(E \) gene determines whether a dark pigment (eumelanin) will be deposited in fur.
 - Genotype \(ee \) = no dark pigment; yellow fur
 - \(EE \) or \(Ee \) a.k.a. \((E_) \) had dark pigment deposited on fur

- Second gene \(B \), determines how dark pigment will be.
 - \(E_{bb} \) = chocolate lab
 - \(E_{B_}\) = black lab
 - \(ee_{bb} \) = yellow lab with brown nose, lips, eye rims
 - \(ee_{B_} \) = yellow lab with black nose, lips, eye rims

Sex Chromosomes and Sex Determination

Structure and # sex chromosomes vary in different species

In humans, Y chromosome determines “maleness”
- very condensed
Pedigrees
- Cannot perform controlled crosses on humans like plants
 - human inheritance use family histories
 - Pedigree – graphical representation of matings and offspring over multiple generations for a particular trait
- Geneticists can deduce model for mode of inheritance for trait

Dominant Pedigree: Juvenile Glaucoma
- One of most extensive pedigrees – 3 centuries
- Disease causes degeneration of nerve fibers in optic nerve (from eye to brain), leading to blindness.
 Dominant nature of trait obvious; every generation shows trait!

Key
- Male
- Female
- Affected male
- Affected female
- Mating
- Offspring

1st generation
- Male
- Female
- Affected
- Mating
- Offspring

2nd generation
- Male
- Female
- Affected
- Mating
- Offspring

3rd generation
- Male
- Female
- Affected
- Mating
- Offspring

(x) Is a widow's peak a dominant or recessive trait?
(b) Is an attached earlobe a dominant or recessive trait?
Recessive Pedigree: Albinism

- Pigment melanin not produced
 - Multiple genes involved
 - Common feature = loss pigment from hair, skin, and eyes → sensitive to sun

- One example – due to nonfunctional allele of enzyme tyrosinase, required for formation of melanin pigment (tanning)
 - Female and males affected equally

Recessive Pedigree: Albinism

- Characteristics
 - Most affected individuals have unaffected parents
 - Single affected parent usually does not have affected offspring

 - Affected offspring are more frequent when parents related