Chapter 4
Carbon and the Molecular Diversity of Life
Organic Chemistry

- The study of carbon compounds.

Urea
Carbon’s versatility

- Forms 4 covalent bonds.
- Molecular shape is tetrahedral.
- Bonds easily to itself.
Major Elements Of Organic Molecules

- Carbon: +4 or −4
- Hydrogen: +1
- Oxygen: −2
- Nitrogen: −3

The valences are the “rules” for building organic molecules.
Hydrocarbons

- Organic molecules made of only carbon and hydrogen.
Examples

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Structural Formula</th>
<th>Ball-and-Stick Model</th>
<th>Space-Filling Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>H — C — H — H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Methane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆</td>
<td>H — C = C — H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Ethane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄</td>
<td>H — C = C — H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Ethene (ethylene)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Isomers

- Compounds with the same molecular formula but have different structures.
- Result: Different molecular and chemical properties.
Types Of Isomers

1. Structural
2. Geometric
3. Enantiomers
Structural Isomers

- Different in covalent arrangements of their atoms.

Butane

Isobutane
Geometric Isomers

- Same covalent partnership but differ in spatial arrangements.
- Arise from the inflexibility of double bonds.
(a) Structural isomers

(b) Geometric isomers

(c) Enantiomers
Enantiomers

- Molecules that are mirror images of each other.
- Usually involve an asymmetric carbon.
(a) Structural isomers

(b) Geometric isomers

(c) Enantiomers
Organisms are sensitive to even the most subtle variations in molecular architecture.
Example – Thalidomide

- Cells can distinguish between two isomers.
- One is an effective drug.
- The other causes birth defects.
A group of atoms attached to a carbon skeleton.
Have consistent properties.
Their number and kind give properties to the molecule.
Importance of Functional Groups

Female lion

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
What to focus on:

- Structure of the functional group
- Properties of the functional group
- Examples of molecules with the functional group
Hydroxyl

STRUCTURE

- OH
- (may be written HO—)

EXAMPLE

Ethanol, the alcohol present in alcoholic beverages

NAME OF COMPOUND

- Alcohols (their specific names usually end in -ol)

FUNCTIONAL PROPERTIES

- Is polar as a result of the electrons spending more time near the electronegative oxygen atom.
- Can form hydrogen bonds with water molecules, helping dissolve organic compounds such as sugars.
Ketones if the carbonyl group is within a carbon skeleton

Aldehydes if the carbonyl group is at the end of the carbon skeleton

- A ketone and an aldehyde may be structural isomers with different properties, as is the case for acetone and propanal.
- These two groups are also found in sugars, giving rise to two major groups of sugars: aldoses (containing an aldehyde) and ketoses (containing a ketone).
Aldehydes

- A carbonyl group at the end of a carbon skeleton.
 Ex. – C=O
 \[\text{H} \]
- Sometimes written as
 – CHO
Ketones

- A carbonyl group in the middle of a carbon chain.

Ex. \(-\text{C–C–C–}\)
Carboxyl

STRUCTURE

[Diagram of a carboxyl group]

EXAMPLE

Acetic acid, which gives vinegar its sour taste

NAME OF COMPOUND

Carboxylic acids, or organic acids

FUNCTIONAL PROPERTIES

- Has acidic properties because the covalent bond between oxygen and hydrogen is so polar; for example,

 ![Acetic acid](image)

 ![Acetate ion](image)

- Found in cells in the ionized form with a charge of 1− and called a carboxylate ion (here, specifically, the acetate ion).
Carboxylic Acids

- Donate H^+ (acid).
- Form many weak organic acids.
Amino

STRUCTURE

EXAMPLE

Because it also has a carboxyl group, glycine is both an amine and a carboxylic acid; compounds with both groups are called amino acids.

FUNCTIONAL PROPERTIES

- Acts as a base; can pick up an H⁺ from the surrounding solution (water, in living organisms).

 (nonionized) (ionized)

- Ionized, with a charge of 1⁺, under cellular conditions.

NAME OF COMPOUND

Amines
Two sulfhydryl groups can react, forming a covalent bond. This “cross-linking” helps stabilize protein structure.

Cross-linking of cysteines in hair proteins maintains the curliness or straightness of hair. Straight hair can be “permanently” curled by shaping it around curlers, then breaking and re-forming the cross-linking bonds.
Phosphate

STRUCTURE

[Image of phosphate structure]

EXAMPLE

Glycerol phosphate

In addition to taking part in many important chemical reactions in cells, glycerol phosphate provides the backbone for phospholipids, the most prevalent molecules in cell membranes.

NAME OF COMPOUND

Organic phosphates

FUNCTIONAL PROPERTIES

- Contributes negative charge to the molecule of which it is a part (2– when at the end of a molecule; 1– when located internally in a chain of phosphates).
- Has the potential to react with water, releasing energy.
Methyl

STRUCTURE

- Molecular structure of methyl.

EXAMPLE

- 5-Methyl cytidine

5-Methyl cytidine is a component of DNA that has been modified by addition of the methyl group.

NAME OF COMPOUND

Methylated compounds

FUNCTIONAL PROPERTIES

- Addition of a methyl group to DNA, or to molecules bound to DNA, affects expression of genes.
- Arrangement of methyl groups in male and female sex hormones affects their shape and function.
Summary

- Recognize that carbon is a versatile atom in terms of bonding and forming molecules.
- Be able to recognize isomers.
- Know the seven functional groups and what properties they give to molecules.