13
PART A

The Respiratory System

ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY
EIGHTH EDITION

ELAINE N. MARIEB
Organs of the Respiratory system

- Nose
- Pharynx
- Larynx
- Trachea
- Bronchi
- Lungs — alveoli
Function of the Respiratory System

- Oversees gas exchanges between the blood and external environment
- Exchange of gasses takes place within the lungs in the alveoli
- Passageways to the lungs purify, warm, and humidify the incoming air
The Nose

- The only externally visible part of the respiratory system

- Air enters the nose through the external nares (nostrils)

- The interior of the nose consists of a nasal cavity divided by a nasal septum
Upper Respiratory Tract

Figure 13.2

- Sphenoidal sinus
- Cribriform plate of ethmoid bone
- Pharyngeal tonsil
- Superior concha
- Opening of auditory tube
- Middle concha
- Nasopharynx
- Inferior concha
- Internal nares
- External nares
- Uvula
- Hard palate
- Palatine tonsil
- Soft palate
- Oropharynx
- Tongue
- Laryngopharynx
- Lingual tonsil
- Vocal fold (true vocal cords)
- Epiglottis
- Larynx
- Hyoid bone
- Thyroid cartilage of larynx
- Vocal cords (true vocal cords)
- Cricoid cartilage of larynx
- Esophagus
- Thyroid gland
- Trachea
Anatomy of the Nasal Cavity

- Olfactory receptors are located in the mucosa on the superior surface

- The rest of the cavity is lined with respiratory mucosa
 - Moistens air
 - Traps incoming foreign particles
Anatomy of the Nasal Cavity

- Lateral walls have projections called conchae
 - Increases surface area
 - Increases air turbulence within the nasal cavity
- The nasal cavity is separated from the oral cavity by the palate
 - Anterior hard palate (bone)
 - Posterior soft palate (muscle)
Paranasal Sinuses

- Cavities within bones surrounding the nasal cavity
 - Frontal sinus
 - Sphenoid sinus
 - Ethmoid sinus
 - Maxillary sinus
Paranasal Sinuses

- Function of the sinuses
 - Lighten the skull
 - Act as resonance chambers for speech
 - Produce mucus that drains into the nasal cavity
Pharynx (Throat)

- Muscular passage from nasal cavity to larynx
- Three regions of the pharynx
 - Nasopharynx – superior region behind nasal cavity
 - Oropharynx – middle region behind mouth
 - Laryngopharynx – inferior region attached to larynx
- The oropharynx and laryngopharynx are common passageways for air and food
Structures of the Pharynx

- Auditory tubes enter the nasopharynx
- Tonsils of the pharynx
 - Pharyngeal tonsil (adenoids) in the nasopharynx
 - Palatine tonsils in the oropharynx
 - Lingual tonsils at the base of the tongue
Larynx (Voice Box)

- Routes air and food into proper channels
- Plays a role in speech
- Made of eight rigid hyaline cartilages and a spoon-shaped flap of elastic cartilage (epiglottis)
Structures of the Larynx

- Thyroid cartilage
 - Largest hyaline cartilage
 - Protrudes anteriorly (Adam’s apple)
- Epiglottis
 - Superior opening of the larynx
 - Routes food to the esophagus and air toward the trachea
Structures of the Larynx

- Vocal cords (vocal folds)
 - Vibrate with expelled air to create sound (speech)
- Glottis – opening between vocal cords
Trachea (Windpipe)

- Connects larynx with bronchi
- Lined with ciliated mucosa
 - Beat continuously in the opposite direction of incoming air
 - Expel mucus loaded with dust and other debris away from lungs
- Walls are reinforced with C-shaped hyaline cartilage
Primary Bronchi

- Formed by division of the trachea
- Bronchi subdivide into smaller and smaller branches
Lungs

- Occupy most of the thoracic cavity
 - Apex is near the clavicle (superior portion)
 - Base rests on the diaphragm (inferior portion)
 - Each lung is divided into lobes by fissures
 - Left lung – two lobes
 - Right lung – three lobes
Coverings of the Lungs

- Pulmonary (visceral) pleura covers the lung surface
- Parietal pleura lines the walls of the thoracic cavity
- Pleural fluid fills the area between layers of pleura to allow gliding
Respiratory Tree Divisions

- Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioli
- Terminal bronchioli
Bronchioles

- Smallest branches of the bronchi

Figure 13.5a
All but the smallest branches have reinforcing cartilage
- Terminal bronchioles end in alveoli
Respiratory Zone

- Structures
 - Respiratory bronchioli
 - Alveolar duct
 - Alveoli

- Gas exchange takes place within the alveoli in the respiratory membrane
Respiratory Membrane (Air-Blood Barrier)

- Thin squamous epithelial layer lining alveolar walls
- Pulmonary capillaries cover external surfaces of alveoli
Respiratory Membrane (Air-Blood Barrier)

Figure 13.6

Diagram showing the respiratory membrane with labels for surfactant-secreting cell, squamous epithelial cell of alveolar wall, endothelial cell nucleus, alveoli (gas filled), red blood cell, alveolar pores, respiratory membrane, macrophage, alveolar epithelium, fused basement membranes, capillary endothelium, oxygen (O_2), and carbon dioxide (CO_2).
Gas Exchange

- Gas crosses the respiratory membrane by diffusion
 - Oxygen enters the blood
 - Carbon dioxide enters the alveoli
- Macrophages add protection
- Surfactant coats gas-exposed alveolar surfaces
Events of Respiration

- Pulmonary ventilation – moving air in and out of the lungs (breathing!)
- External respiration – gas exchange between pulmonary blood and alveoli
Events of Respiration

- **Respiratory gas transport** – transport of oxygen and carbon dioxide via the bloodstream

- **Internal respiration** – gas exchange between blood and tissue cells in systemic capillaries
Mechanics of Breathing (Pulmonary Ventilation)

- Completely mechanical process
- Depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure
Mechanics of Breathing (Pulmonary Ventilation)

- Two phases
 - Inspiration – flow of air into lung
 - Expiration – air leaving lung
Inspiration

- Diaphragm and intercostal muscles contract
- The size of the thoracic cavity increases
- External air is pulled into the lungs due to an increase in intrapulmonary volume
(a) Inspiration: Air (gases) flows into the lungs

Changes in anterior-posterior and superior-inferior dimensions

- Ribs elevated as external intercostals contract
- External intercostal muscles
- Diaphragm moves inferiorly during contraction

Changes in lateral dimensions

- Full inspiration
Expiration

- Largely a passive process which depends on natural lung elasticity
- As muscles relax, air is pushed out of the lungs
- Forced expiration can occur mostly by contracting internal intercostal muscles to depress the rib cage
Expiration

(b) Expiration: Air (gases) flows out of the lungs

Ribs depressed as external intercostals relax

External intercostal muscles

Diaphragm moves superiorly as it relaxes

Expiration

Figure 13.7b
Pressure Differences in the Thoracic Cavity

- Normal pressure within the pleural space is always negative (intrapleural pressure)

- Differences in lung and pleural space pressures keep lungs from collapsing
Nonrespiratory Air Movements

- Can be caused by reflexes or voluntary actions

- Examples
 - Cough and sneeze – clears lungs of debris
 - Laughing
 - Crying
 - Yawn
 - Hiccup
Respiratory Volumes and Capacities

- Normal breathing moves about 500 ml of air with each breath (tidal volume \([TV]\))

- Many factors that affect respiratory capacity
 - A person’s size
 - Sex
 - Age
 - Physical condition

- Residual volume (RV) of air – after exhalation, about 1200 ml of air remains in the lungs
Respiratory Volumes and Capacities

- Inspiratory reserve volume (IRV)
 - Amount of air that can be taken in forcibly over the tidal volume
 - Usually between 2100 and 3200 ml

- Expiratory reserve volume (ERV)
 - Amount of air that can be forcibly exhaled
 - Approximately 1200 ml
Respiratory Volumes and Capacities

- Vital capacity (VC)
 - The total amount of exchangeable air
 - Vital capacity = TV + IRV + ERV
- Dead space volume
 - Air that remains in conducting zone and never reaches alveoli
 - About 150 ml
Respiratory Volumes and Capacities

- Functional volume
 - Air that actually reaches the respiratory zone
 - Usually about 350 ml
- Respiratory capacities are measured with a spirometer
Gas Transport in the Blood

- Oxygen transport in the blood
 - Inside red blood cells attached to hemoglobin (oxyhemoglobin [HbO$_2$])
 - A small amount is carried dissolved in the plasma
Gas Transport in the Blood

- Carbon dioxide transport in the blood
 - Most is transported in the plasma as bicarbonate ion (HCO$_3^-$)
 - A small amount is carried inside red blood cells on hemoglobin, but at different binding sites than those of oxygen
Internal Respiration

Figure 13.11

(a) Loading of O₂

Hb + O₂ → HbO₂ (Oxyhemoglobin is formed)

O₂

CO₂

Alveoli (air sacs)

Plasma

Pulmonary capillary

(b) Unloading of CO₂

CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻ Carbonic acid

HbO₂ → Hb + O₂

Tissue cells

Plasma

Systemic capillary

Red blood cell

Loading of CO₂

Unloading of O₂

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings
External Respiration, Gas Transport, and Internal Respiration Summary

Figure 13.10
Neural Regulation of Respiration

- Activity of respiratory muscles is transmitted to the brain by the phrenic and intercostal nerves.

- Neural centers that control rate and depth are located in the medulla.

- The pons appears to smooth out respiratory rate.

- Normal respiratory rate (eupnea) is 12–15 respirations per minute.

- Hyperpnia is increased respiratory rate often due to extra oxygen needs.
Neural Regulation of Respiration

Breathing control centers stimulated by:
- CO_2 increase in blood (acts directly)
- Nerve impulse from O_2 sensor indicating O_2 decrease

Figure 13.12
Factors Influencing Respiratory Rate and Depth

- Physical factors
 - Increased body temperature
 - Exercise
 - Talking
 - Coughing
- Volition (conscious control)
- Emotional factors
Factors Influencing Respiratory Rate and Depth

- Chemical factors
 - Carbon dioxide levels
 - Level of carbon dioxide in the blood is the main regulatory chemical for respiration
 - Increased carbon dioxide increases respiration
 - Changes in carbon dioxide act directly on the medulla oblongata
Factors Influencing Respiratory Rate and Depth

- Chemical factors (continued)
 - Oxygen levels
 - Changes in oxygen concentration in the blood are detected by chemoreceptors in the aorta and carotid artery
 - Information is sent to the medulla oblongata
Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Exemplified by chronic bronchitis and emphysema

- Major causes of death and disability in the United States
Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Features of these diseases
 - Patients almost always have a history of smoking
 - Labored breathing (dyspnea) becomes progressively more severe
 - Coughing and frequent pulmonary infections are common
Features of these diseases (continued)

- Most victims retain carbon dioxide, are hypoxic and have respiratory acidosis
- Those infected will ultimately develop respiratory failure
Chronic Obstructive Pulmonary Disease (COPD)

- Tobacco smoke
- Air pollution

Continual bronchial irritation and inflammation

- Chronic bronchitis
 - Excessive mucus produced, chronic productive cough, bronchospasm

Breakdown of elastin in connective tissue of lungs

- Emphysema
 - Destruction of alveolar walls, lung fibrosis, air trapping

Airway obstruction or air trapping
- Dyspnea
- Frequent infections

Respiratory failure
Emphysema

- Alveoli enlarge as adjacent chambers break through
- Chronic inflammation promotes lung fibrosis
- Airways collapse during expiration
- Patients use a large amount of energy to exhale
- Overinflation of the lungs leads to a permanently expanded barrel chest
- Cyanosis appears late in the disease
Chronic Bronchitis

- Mucosa of the lower respiratory passages becomes severely inflamed
- Mucus production increases
- Pooled mucus impairs ventilation and gas exchange
- Risk of lung infection increases
- Pneumonia is common
- Hypoxia and cyanosis occur early
Chronic Obstructive Pulmonary Disease (COPD)

- Tobacco smoke
- Air pollution

Continual bronchial irritation and inflammation

Chronic bronchitis
- Excessive mucus production, chronic productive cough, bronchospasm

Emphysema
- Destruction of alveolar walls, lung fibrosis, air trapping

Breakdown of elastin in connective tissue of lungs

Airway obstruction or air trapping
- Dyspnea
- Frequent infections

Respiratory failure
Lung Cancer

- Accounts for 1/3 of all cancer deaths in the United States
- Increased incidence associated with smoking
- Three common types
 - Squamous cell carcinoma
 - Adenocarcinoma
 - Small cell carcinoma
Sudden Infant Death syndrome (SIDS)

- Apparently healthy infant stops breathing and dies during sleep
- Some cases are thought to be a problem of the neural respiratory control center
- One third of cases appear to be due to heart rhythm abnormalities
Asthma

- Chronically inflamed, hypersensitive bronchiole passages
- Response to irritants/allergies, with dyspnea, coughing, and wheezing
Developmental Aspects of the Respiratory System

- Important birth defects
 - Cystic fibrosis – genetically inherited recessive disorder
 - oversecretion of thick mucus clogs the respiratory system & digestive system
Effects of Aging on Respiratory System

- Elasticity of lungs decreases
- Vital capacity decreases
- Blood oxygen levels decrease
- Stimulating effects of carbon dioxide decreases
- More risks of respiratory tract infection (pneumonia & influenza)